MMP-7 mediates cleavage of N-cadherin and promotes smooth muscle cell apoptosis
نویسندگان
چکیده
AIMS Vascular smooth muscle cell (VSMC) apoptosis can lead to thinning of the fibrous cap and plaque instability. We previously showed that cell-cell contacts mediated by N-cadherin reduce VSMC apoptosis. This study aimed to determine whether matrix-degrading metalloproteinase (MMP)-dependent N-cadherin cleavage causes VSMC apoptosis. METHODS AND RESULTS Induction of human VSMC apoptosis using different approaches, including 200 ng/mL Fas ligand (Fas-L) and culture in suspension, caused N-cadherin cleavage and resulted in the appearance of a C-terminal fragment of N-cadherin (approximately 35 kDa). Appearance of this fragment during apoptosis was inhibited by 47% with the broad-spectrum MMP inhibitor BB-94. We observed retarded cleavage of N-cadherin after treatment with Fas-L in aortic mouse VSMCs lacking MMP-7. Furthermore, VSMC apoptosis, measured by quantification of cleaved caspase-3, was 43% lower in MMP-7 knockout mouse VSMCs compared with wild-type VSMCs following treatment with Fas-L. Addition of recombinant active MMP-7 increased the amount of N-cadherin fragment by 82% and augmented apoptosis by 53%. The involvement of MMP-7 was corroborated using human cells, where a MMP-7 selective inhibitor reduced the amount of fragment formed by 51%. Importantly, we observed that treatment with Fas-L increased levels of active MMP-7 by 80%. Finally, we observed significantly increased cleavage of N-cadherin, MMP-7 activity, and apoptosis in human atherosclerotic plaques compared with control arteries, and a significant reduction in apoptosis in atherosclerotic plaques from MMP-7 knockout mice. CONCLUSION This study demonstrates that MMP-7 is involved in the cleavage of N-cadherin and modulates VSMC apoptosis, and may therefore contribute to plaque development and rupture.
منابع مشابه
Cleavage of E-Cadherin by Matrix Metalloproteinase-7 Promotes Cellular Proliferation in Nontransformed Cell Lines via Activation of RhoA
Perturbations in cell-cell contact machinery occur frequently in epithelial cancers and result in increased cancer cell migration and invasion. Previously, we demonstrated that MMP-7, a protease implicated in mammary and intestinal tumor growth, can process the adherens junction component E-cadherin. This observation leads us to test whether MMP-7 processing of E-cadherin could directly impact ...
متن کاملNox1 transactivation of epidermal growth factor receptor promotes N-cadherin shedding and smooth muscle cell migration.
AIMS In atherosclerosis and restenosis, vascular smooth muscle cells (SMCs) migrate into the subendothelial space and proliferate, contributing to neointimal formation. The goal of this study was to define the signalling pathway by which Nox1 NAPDH oxidase mediates SMC migration. METHODS AND RESULTS SMCs were cultured from thoracic aorta from Nox1(-/y) (Nox1 knockout, KO) and wild-type (WT) m...
متن کاملExtracellular cleavage of E-cadherin promotes epithelial cell extrusion.
Epithelial cell extrusion and subsequent apoptosis is a key mechanism to prevent the accumulation of excess cells. By contrast, when driven by oncogene expression, apical cell extrusion is followed by proliferation and represents an initial step of tumorigenesis. E-cadherin (E-cad), the main component of adherens junctions, has been shown to be essential for epithelial cell extrusion, but its m...
متن کاملN-Cadherin cleavage during activated hepatic stellate cell apoptosis is inhibited by tissue inhibitor of metalloproteinase-1
Apoptosis of hepatic stellate cells (HSC) has previously been shown to occur during spontaneous resolution of experimental liver fibrosis. TIMP-1 has also been shown to have a key role because of its ability to inhibit apoptosis of HSC via matrix metalloproteinase (MMP) inhibition. This has led to further study of novel substrates for MMPs that might impact on HSC survival. N-Cadherin is known ...
متن کاملExogenous Expression of N-Cadherin in Breast Cancer Cells Induces Cell Migration, Invasion, and Metastasis
E- and N-cadherin are calcium-dependent cell adhesion molecules that mediate cell-cell adhesion and also modulate cell migration and tumor invasiveness. The loss of E-cadherin-mediated adhesion has been shown to play an important role in the transition of epithelial tumors from a benign to an invasive state. However, recent evidence indicates that another member of the cadherin family, N-cadher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 87 شماره
صفحات -
تاریخ انتشار 2010